В чем заключается особенность роста и размножения бактериальных клеток. Рост и размножение бактерий




Рост и размножение

Термин «рост» означает увеличение цитоплазматической массы отдельной клетки или группы бактерий в результате синтеза клеточного материала (например, белка, РНК, ДНК). Достигнув определенных размеров, клетка прекращает рост и начинает размножаться.

Под размножением микробов подразумевают способность их к самовоспроизведению, увеличению количества особей на единицу объема. Иначе можно сказать: размножение - это повышение числа особей микробной популяции.

Бактерии размножаются преимущественно простым поперечным делением (вегетативное размножение), которое происходит в раз­личных плоскостях, с образованием многообразных сочетаний клеток (кисть винограда - стафилококки, цепочки - стрептокок­ки, соединения по парам - диплококки, тюки, пакеты - сарцины и др.). Процесс деления состоит из ряда последовательных этапов. Первый этап начинается формированием в средней части клетки поперечной перегородки (рис. 6), состоящей вначале из цитоплаз­матической мембраны, которая делит цитоплазму материнской клетки на две дочерние. Параллельно с этим синтезируется клеточная стенка, образующая полноценную перегородку между двумя дочерними. В процессе деления бактерий важным условием является репликация (удвоение) ДНК, которая осуществляется ферментами ДНК-полимеразами. При удвоении ДНК происходит разрыв водородных связей и образование двух спиралей ДНК, каждая из которых находится в дочерних клетках. Далее дочерние односпиральные ДНК восстанавливают водородные связи и вновь образуют двуспиральные ДНК.

Репликация ДНК и деление клеток происходит с определенной скоростью, присущей каждому виду микроба, что зависит от возраста культуры и характера питательной среды. Например, скорость роста кишечной палочки колеблется от 16 до 20 мин; у микобактерий туберкулеза деление наступает лишь через 18-20 ч; для клетки культуры тканей млекопитающих требуются сутки. Следовательно, бактерии большинства видов размножаются почти II 100 раз быстрее, чем клетки культуры тканей.

Процесс размножения культуры микробов на несменяемой среде протекает не­равномерно. В нем определяют четыре основные фазы.

1. Начальная фаза (лаг-фаза), или фаза покоя. В это время культура приспосабливается к питательной среде. В микробной клетке увеличивается содержание РНК ис ее помощью происходит синтез необходимых фермен­тов.

2. Экспоненциальная (логарифмическая) фаза ха­рактеризуется максимальным увеличением клеток в культуре, оно идет в геометрической прогрессии (1, 2,4, 8, 16, 256 и т. д.). В это время в среде большинство молодых и биологически активных клеток. В конце фа­зы, когда среда истощается, исчезают необходимые для данного микроба вещества, уменьшается количество кис­лорода, происходит увеличение продуктов обмена - рост культуры замедляется. Кривая постепенно принимает горизонтальное направление.



3. Стационарная фаза, или период зрелости, гра­фически представляет линию, идущую параллельно оси абсцисс. Наступает равновесие между числом вновь об­разованных и погибших клеток. Уменьшается количе­ство среды, увеличивается плотность клеток в попу­ляции, усиливается токсическое действие продуктов об­мена - все это обусловливает гибель клеток.

4. Фаза отмирания. В этой фазе наблюдается не только уменьшение, но и изменение клеток. Появляют­ся деградированные формы, а также споры. Через не­сколько недель или месяцев культура погибает. Так происходит потому, что ядовитые продукты жизнедея­тельности не только тормозят, но и убивают микробные клетки.

Таким образом, благодаря процессам метаболизма, поддерживается жизнедеятельность микробной клетки. Для дыхания аэробом необходим кислород, анаэробы используют нитратное, сульфатное дыхание и брожение. Микроорганизмы усваивают органические и неорганические вещества из внешней среды, окисляя которые получают необходимую энергию и пластические элементы. В результате происходит рост клетки. Достигнув необходимой стадии зрелости происходит размножение клетки простым делением. В процессе своей жизнедеятельности микроорганизмы постепенно расходуют питательные вещества, выделяя в окружающую среду свои метаболиты, изменяя тем самым состав среды и делая ее непригодной для жизни.

Вперед >>>

1. Рост и размножение бактерий

Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.

Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.

Рост всегда предшествует размножению. Бактерии размножаются поперечным бинарным делением, при котором из одной материнской клетки образуются две одинаковые дочерние.

Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. В точке прикрепления хромосомы к цитоплазматической мембране (точке-репликаторе) действует белок-инициатор, который вызывает разрыв кольца хромосомы , и далее идет деспирализация ее нитей. Нити раскручиваются, и вторая нить прикрепляется к цитоплазматической мембране в точке-прорепликаторе, которая диаметрально противоположна точке-репликатору. За счет ДНК-полимераз по матрице каждой нити достраивается точная ее копия. Удвоение генетического материала – сигнал для удвоения числа органелл. В септальных мезосомах идет построение перегородки, делящей клетку пополам.

Двухнитевая ДНК спирализуется, скручивается в кольцо в точке прикрепления к цитоплазматической мембране. Это является сигналом для расхождения клеток по септе. Образуются две дочерние особи.

На плотных питательных средах бактерии образуют скопления клеток – колонии, различные по размерам, форме, поверхности, окраске и т. д. На жидких средах рост бактерий характеризуется образованием пленки на поверхности питательной среды, равномерного помутнения или осадка.

Размножение бактерий определяется временем генерации. Это период, в течение которого осуществляется деление клетки . Продолжительность генерации зависит от вида бактерий, возраста, состава питательной среды, температуры и др.

Фазы размножение бактериальной клетки на жидкой питательной среде:

1) начальная стационарная фаза; то количество бактерий, которое попало в питательную среду и в ней находится;

2) лаг-фаза (фаза покоя); продолжительность – 3–4 ч, происходит адаптация бактерий к питательной среде, начинается активный рост клеток, но активного размножения еще нет; в это время увеличивается количество белка, РНК;

3) фаза логарифмического размножения; активно идут процессы размножения клеток в популяции, размножение преобладает над гибелью;

4) максимальная стационарная фаза; бактерии достигают максимальной концентрации, т. е. максимального количества жизнеспособных особей в популяции; количество погибших бактерий равно количеству образующихся; дальнейшего увеличения числа особей не происходит;

5) фаза ускоренной гибели; процессы гибели преобладают над процессом размножения, так как истощаются питательные субстраты в среде. Накапливаются токсические продукты, продукты метаболизма. Этой фазы можно избежать, если использовать метод проточного культивирования: из питательной среды постоянно удаляются продукты метаболизма и восполняются питательные вещества.

<<< Назад
Вперед >>>

Рост бактерий – это увеличение бактериальной клетки в размерах без увеличения числа особей в популяции. Рост клетки не беспределен. После достижения критических размеров клетка подвергается делению.

Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.

Рост всегда предшествует размножению. Бактерии размножаются поперечным бинарным делением, при котором из одной материнской клетки образуются две одинаковые дочерние. У большинства грамположительных бактерий деление происходит путем синтеза поперечной перегородки, идущей от периферии к центру. Клетки большинства грамотрицательных бактерий делятся путем перетяжки.

Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. Репликация начинается в одной избранной области, называемой origin (начало), имеющей определенную последовательность нуклеотидов. Здесь может возникать одна или две репликативные вилки. В процессе репликации участвуют более 20 ферментов. Так как бактериальная ДНК двуспиральная, перед репликацией она должна быть разделена. В этом процессе участвуют ферменты хеликаза, которая расплетает двойную спираль и топоизомераза, которая предотвращает образование вторичных завитков. SSB-белок связывается с одноцепочечной ДНК, предотвращая повторное скручивание в двойную спираль. В результате образуется репликативная вилка. Синтез новых цепей ДНК осуществляется ферментом ДНК-полимиразой. Для осуществления реакции полимеризации нуклеотидов на матрице родительской цепи, полимеразе требуется затравка – праймер. Праймер представляет собой короткую нуклеотидную цепочку РНК, комплементарную матричной цепи, со свободным 3 / - концом. После того как цепь ДНК начала синтезироваться, РНК-затравка удаляется. Так как цепи ДНК в дуплексе антипарралельны, то направление расплетания двойной цепи совпадает лишь с направлением синтеза ДНК на одной матрице, которая называется ведущей. На комплементарной цепи ДНК синтезируется короткими фрагментами, которые впоследствии сшиваются в одну цепь ДНК-лигазами. Процесс репликации ДНК бактерии продолжается до тех пор, пока не удвоится вся ДНК.



При внесении бактерий в питательную они растут и размножаются до тех пор, пока содержание какого-нибудь из необходимых компонентов среды не достигнет минимума, после чего рост и размножение прекращаются. Если не прибавлять питательных веществ и не удалять конечных продуктов обмена, то получаем статистическую бактериальную культуру.

Фазы размножения бактерий:

1. Начальная (лаг-фаза) охватывает промежуток времени от момента посева бактерий до начала их роста. Ее продолжительность составляет в среднем 2-5 часов и зависит от состава питательной среды.

2. Экспоненциальная (логарифмическая) фаза. Характеризуется постоянной максимальной скоростью деления клеток. Эта скорость зависит от вида бактерий и питательной среды. Время удвоения клеток называется временем генерации. Это время варьирует от нескольких минут до нескольких часов.

3. Стационарная фаза наступает когда число клеток перестает увеличиваться. При уменьшении в питательной среде концентрации питательных веществ, снижении парциального давления кислорода, накоплении токсических продуктов обмена, уменьшается скорость роста бактерий. Продолжительность стационарной фазы составляет несколько часов и зависит от вида бактерий.

4. Фаза отмирания наступает вследствие накопления кислых продуктов обмена или в результате автолиза под влиянием собственных ферментов. Продолжительность этой фазы колеблется от десятка часов до нескольких недель.

3.2. Питательные среды, принципы их классификации, требования, предъявляемые к питательным средам, условия культивирования микроорганизмов.

Основой бактериологических работ являются питательные среды, нередко определяя своим качеством результаты исследования.

Основные требования, предъявляемые к питательным средам:

1. Питательные среды должны содержать все необходимые для питания микроба питательные вещества, т.е. обладать питательностью.

2. Иметь достаточную влажность

3. Иметь оптимальную рН (7,2-7,6) кислотность среды.

4. Обладать изотоничностью (концентрация NaCl 0,87%), для галофильных бактерий концентрация соли 1% и выше.

5. Иметь оптимальный электронный потенциал, свидетельствующий о содержании в среде растворенного кислорода. Он должен быть высоким для аэробов и низким для анаэробов.

6. Быть прозрачными, чтобы был виден рост бактерий, особенно в жидких средах.

7. Быть стерильными (чтобы не было других бактерий).

Для приготовления питательных сред используют продукты животного происхождения (мясо, рыба, кровь, яйца, молоко) и продукты растительного происхождения (картофель). Также используют синтетические питательные среды, составленные из химических соединений.

Источником азота для бактерий служат простые аммонийные соединения, аминокислоты или пептоны; источником углерода – сахар, многоатомные спирты, органические кислоты. Потребность бактерий в неорганических элементах удовлетворяется прибавляемыми к питательной среде солями: NaCl, КН 2 РО 4 , К 2 НРО 4 .

В зависимости от консистенции питательные среды могут быть: жидкими, полужидкими и плотными. Плотность среды достигается добавлением агара. Агар- полисахарид, получаемый из водорослей. Он плавится при температуре 100 оС, остывает при температуре 45-50 оС. Для полужидких сред агар добавляют в концентрации 0,5%, для плотных – 1,5-2%. Жидкие среды не содержат агар-агара.

По составу питательные среды могут быть простыми и сложными . К простым средам относятся пептонная вода, мясопептонный бульон, мясопептонный агар, агар Хоттингера. Сложные – это простые с добавлением дополнительного питательного компонента (сахарный, сывороточный, желчный бульоны, кровяной, сывороточный, желточно-солевой агары, среда Кита-Тароцци, Вильсона-Блера).

В зависимости от назначения среды подразделяются:

1. Общего назначения – для культивирования большинства бактерий (мясопептонный агар, кровяной агар).

2. Специального назначения:

а) элективные среды – это среды, на которых растет какой-то определенный микроорганизм. Например, щелочной агар, имеющий рН 9, служит для выделения холерного вибриона.

б) среды обогащения – это такие среды, которые стимулируют рост какого-то определенного микроорганизма, ингибируя рост других. Например, магниевая и селенитовая среды стимулируют рост бактерий рода сальмонелла, ингибируя рост кишечной палочки.

в) дифференциально-диагностические среды служат для изучения ферментативной активности бактерий (среды Гисса).

г) комбинированные питательные среды сочетают в себе элективную среду, подавляющую рост сопутствующей флоры и дифференциально-диагностическую (среда Плоскирева для выделения шигелл, висмут-сульфитный агар – для сальмонелл). Обе эти среды ингибируют рост кишечной палочки.

С целью дифференциации прототрофных и ауксотрофных бактерий используют селективные среды. Прототрофы растут на минимальной среде, содержащей только соли и углеводы, так как они сами способны синтезировать нужные им для развития метаболиты. Ауксотрофы нуждаются в средах, содержащих определенные аминокислоты, витамины, т.е. факторы роста.

Приготовление питательных сред – один из наиболее ответственных и трудных участков работы бактериологической работы.

В настоящее время медицинской промышленностью организовано производство консервированных сред. Сухие питательные среды находятся в пластмассовых банках с плотно завинчивающимися крышками, обеспечивающими герметичность.

Условия культивирования бактерий:

1. Наличие полноценной питательной среды.

2. Определенная температура культивирования (оптимальная температура 37 0 С).

3. Определенная атмосфера культивирования. Для строгих аэробов необходим кислород, поэтому они хорошо растут на поверхности агара чашках Петри или в тонком верхнем слое жидкой среды. Для роста аэробов в глубинном слое жидкой среды необходимо непрерывно перемешивать или встряхивать питательные среды, чтобы кислород распределялся по всему объему среды. Для факультативных анаэробов используют те же методы. Микроаэрофилы размножаются при пониженном парциальном давлении кислорода. Концентрация СО 2 должна быть 1-5%. Для этого используют специальные СО 2 –инкубаторы или посевы помещают в эксикаторы, в которых устанавливают горячую свечу. Для роста облигатных анаэробов необходимо исключить доступ кислорода. Для этого добавляют к питательным средам редуцирующих кислород веществ (тиогликолевая кислота), регенерация от кислорода воздуха жидких питательных сред путем их кипячения, использование поглотителей кислорода, помещая их в герметически закрываемые емкости «газпаки», использование анаэростатов.

4. Время культивирования (18-48 часов). Для культивирования микобактерий туберкулеза (3-4 недели).

5. Освещение. Для выращивания фототрофных бактерий необходим свет.

В промышленных условиях для получения биомассы бактерий или грибов с целью получения антибиотиков, вакцин, диагностических препаратов культивирование осуществляется в аппаратах (ферментерах) при строгом соблюдении оптимальных параметров роста и размножения культур.

Питание бактерий.

Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки.

Среди необходимых питательных веществ выделяют: углерод, кислород, водород, азот, фосфор, калий, магний, кальций. Кроме органогенов, необходимы микроэлементы. Они обеспечивают активность ферментов. Это цинк, марганец, молибден, кобальт, медь, никель, вольфрам, натрий, хлор.

Для бактерий характерно многообразие источников получения питательных веществ.

В зависимости от источника получения углерода бактерии делят на: 1) аутотрофы (используют неорганические вещества – СО 2); 2) гетеротрофы (используют органический С-гексозы, многоатомные спирты, аминолкислоты);

Процессы питания должны обеспечивать энергетические потребности бактериальной клетки. По источникам энергии микроорганизмы делят на: 1) фототрофы – источник солнечная энергия; 2) хемотрофы – получают энергию за счет окислительно-восстановительных реакций; 3) хемолитотрофы – используют неорганические соединения; 4) хемоорганотрофы – используют органические вещества.

Медицинская микробиология изучает бактерии, которые являются гетерохемоорганотрофы.

Факторами роста бактерий являются витамины, аминокислоты, пуриновые и пиримидиновые основания, присутствие которых ускоряет рост. Среди бактерий выделяют: 1) прототрофы (способны сами синтезировать необходимые вещества); 2) ауксотрофы (нуждаются в факторах роста).

Микроорганизмы ассимилируют питательные вещества в виде небольших молекул, поэтому белки, полисахариды и другие биополимеры могут служить источниками питания только после расщепления их экзоферментами до более простых соединений.

Пути поступления метаболитов и ионов в микробную клетку: I. Пассивный транспорт (без энергетических затрат): простая диффузия; 2) облегченная диффузия (по градиенту концентрации, с помощью белков-переносчиков). II. Активный транспорт (с затратой энергии, против градиента концентрации; при этом происходит взаимодействие субстрата с белком-переносчиком на поверхности цитоплазматической мембраны).

Встречаются модифицированные варианты активного транспорта – перенос химических групп. В роли белков-переносчиков выступают фосфорилированные ферменты, поэтому субстрат переносится в фосфорилированной форме. Такой перенос химической группы называется транслокацией.

Оглавление темы "Дыхание (аэробное, анаэробное). Катаболизм у бактерий. Конструктивный метаболизм (пластический обмен). Рост бактерий в культуре.":
1. Пропионовокислое брожение. Маслянокислое и ацетонобутиловое брожение. Гомоацетатное брожение. Получение энергии окислительным фосфорилированием. Дыхание.
2. Катаболизм углеводов у бактерий. Гликолиз. Гликолитический путь окисления. Путь Эмбдена-Мейерхофа-Парнаса. Пентозофосфатный путь окисления. Схема Варбурга-Диккенса-Хореккера-Рэкера.
3. Путь Энтнера-Дудорова у бактерий. Цикл Кребса. Цикл трикарбоновых кислот у бактерий.
4. Катаболизм азотсодержащих органических соединений бактериями. Аминокислоты. Декарбоксилирование и дезаминирование аминокислот бактериями. Механизм Стиклэнда.
5. Катаболизм жиров и жирных кислот бактериями. Эндогенный энергетический метаболизм бактерий.
6. Конструктивный метаболизм (пластический обмен). Углеродные соединения для биосинтетических реакций бактерий. Биосинтез аминокислот и белков бактериями.
7. Биосинтез нуклеотидов и нуклеиновых кислот бактериями.
8. Биосинтез олигосахаридов и полисахаридов бактериями. Биосинтез липидов (жиров) бактериями.
9. Регуляция метаболизма микроорганизмов. Аллостерические белки.

Собственно под ростом бактерий обычно подразумевают координированную репликацию всех компонентов бактерий. Поскольку деление бактериальной клетки приводит к образованию двух особей, то их число растет в геометрической прогрессии: 2 0 -2 1 -2 2 -2 3 -..2 n . Регуляторное действие на рост бактерий оказывают качество питательной среды и условия выращивания.

Рост популяции клеток в ограниченном жизненном пространстве (периодическая культура) может быть разделён по меньшей мере на четыре фазы (рис. 4-12).

Рис. 4-12. Рост бактериальной культуры .

После внесения в среду бактерии адаптируются к её условиям и размножаются сравнительно медленно (лаг-фаза ). Затем наступает фаза экспоненциального роста (экспоненциальная фаза ). Далее среда истощается, в ней аккумулируются токсические продукты метаболизма, что проявляется снижением темпов размножения и прекращением увеличения числа клеток (стационарная фаза ).

Таким образом, рост в периодической культуре подчиняется закономерностям, действительным не только для одноклеточных, но и для многоклеточных организмов. В последующем бактериальная культура может погибнуть либо значительно сократиться (фаза отмирания). Спорообразующие виды переходят в стадию споруляции, у споронеобразующих видов возможно образование анабиотических форм (см. ниже). В некоторых случаях дополнительно выделяют фазу ускорения роста (начало экспоненциальной фазы) и фазу замедления роста (переход к стационарной фазе).

Лаг-фаза роста бактерий соответствует периоду физиологического приспособления, включающего индукцию ферментов, синтез и сборку рибосом. Продолжительность фазы зависит главным образом от возраста посевного материала (инокулята) бактерий и предшествовавших условий культивирования Если инокулят взят из старой культуры (в стационарной фазе роста), то бактериям необходимо время для адаптации к новым условиям. Если источники энергии и углерода в новой среде отличаются от имевшихся в предшествующей культуре, то адаптация к новым условиям может потребовать синтеза новых ферментов, в которых ранее не было необходимости.

Экспоненциальная фаза роста бактерий (логарифмическая ) характеризуется максимальной скоростью клеточного деления. Для конкретного вида бактерий в конкретных условиях роста время генерации (то есть время, необходимое для удвоения количества бактерий) постоянно в течение всей логарифмической фазы, но вариабельно у различных видов и штаммов, а также зависит oт состава среды и условий культивирования. Время генерации на оптимальной среде может был коротким (у кишечной палочки 20 мин), либо продолжительным (у Mycobacterium tuberculosais 6 ч). В этой фазе в среде происходит максимальное накопление метаболитов бактерий (например, токсинов, бактериоцинов).


Стационарная фаза роста бактерий . В течение этого периода доступность важнейших питательных веществ становится лимитирующим фактором. Устанавливается равновесие между клеточным ростом и делением и процессом отмирания клеток. Спорообразующие бактерии (например родов Bacillus и Clostridium) способны переходить в фазу споруляции, активирующуюся при нахождении бактерий в условия ограниченного питания. В определённый момент соотношение отмирающих, вновь образующихся и покоящихся клеток становится стабильным; подобное состояние известно как максимальная стационарная фаза. Биомасса бактерий в стационарной фазе обозначают как «урожай», или «выход биомассы» (разница между максимальной и исходной биомассой); или «экономический коэффициент», если прирост биомассы отнесён к единице лимитирующего рост субстрата.

Фаза отмирания (спада , лизиса ) включает период логарифмической гибели, переходящий в период уменьшения скорости отмирания бактерий. Причины гибели бактерий в нормальных питательных средах до конца не ясны. Понятны случаи, когда в среде накапливаются кислоты (при росте Escherichia, Lactobacillus). Иногда бактерии разрушаются под действием собственных ферментов (аутолиз). Скорость отмирания широко варьирует в зависимости от условий обитания и особенностей микроорганизма (например, энтеробактерии отмирают медленно, а бациллы - быстро).

Клетки, как любой живой организм, рождаются, живут и умирают. Рост и размножение бактерий происходит очень быстро, они могли бы захватить все жизненное пространство на планете, если бы не их хрупкость и сдерживающие факторы (температура, уровень кислотности среды, отсутствие пищи и т. д.). При благоприятных условиях удвоение клетки занимает в среднем около получаса. Однако в критических ситуациях некоторые виды микроорганизмов (спорообразующие бактерии) способны образовывать споры и «впадать в спячку» на довольно длительный период.

Быстрое размножение бактерий имеет свои плюсы и минусы. Использование микроорганизмов в биотехнологиях (дрожжи, молочнокислые, азотфиксирующие организмы, плесневые грибки и т. д.) направлено на улучшение качества жизни. Однако неконтролируемый рост болезнетворных (патогенных) микробов опасен для людей. Навредить здоровью может и собственная микрофлора человека. В медицине существует понятие синдрома избыточного бактериального роста, при котором количество условно-патогенных микробов в организме человека резко увеличивается, что представляет угрозу для здоровья.

Рост и размножение клетки – это два различных процесса. Под ростом понимают увеличение массы клетки вследствие формирования всех клеточных структур. Размножение – это увеличение количества клеток в колонии. Различают бинарное деление, почкование и генетическую рекомбинацию (процесс, напоминающий половое размножение).

Большинство прокариотических (безъядерных) клеток, к которым принадлежат все бактерии, размножается путем разделения надвое (бинарное деление). Таким способом размножаются, например, молочнокислые бактерии. Процесс начинается с удвоения бактериальной хромосомы (молекула ДНК, заменяющая ядро) и протекает в несколько этапов:

  • клетка удлиняется;
  • наружная оболочка «врастает» внутрь и образует поперечную перегородку (перетяжку);
  • две новые (дочерние) клетки расходятся в разные стороны.

В результате получаются два идентичных организма.

Отдельные микроорганизмы делятся почкованием, но это скорее исключение из общего правила. Процесс заключается в образовании на одном из полюсов клетки короткого выступа, в который «дрейфует» одна из половин разделившегося нуклеоида (молекулы ДНК с генетической информацией). Затем выступ разрастается и отделяется от материнской клетки.

Есть еще вариант, напоминающий половое размножение, – генетическая рекомбинация. В этом случает происходит обмен генетической информацией и в результате получается клетка, содержащая гены своих родителей. Существуют три способа передачи генетической информации:

  • конъюгация – прямая передача (не обмен) части ДНК при контакте от одной бактерии к другой (процесс идет только в одном направлении);
  • трансдукция – перенос фрагмента ДНК с помощью бактериофага (вируса бактерий);
  • трансформация – поглощение генетической информации отмерших или уничтоженных клеток из окружающей среды.

Таким образом, только в результате бинарного деления и почкования получаются идентичные друг другу клетки. При генетической рекомбинации клетка претерпевает изменения, вырабатывая новые свойства и получая другие функции.

Скорость и фазы роста микроорганизмов

В питательных средах рост и размножение бактерий проходят в несколько стадий, различных по количеству доступной пищи и накоплению отходов жизнедеятельности:

  1. Первая фаза (латентная) определяется факторами адаптации к питательной среде. В это время микроорганизмы только осваиваются с новыми условиями. Рост бактерий не наблюдается.
  2. Вторая фаза (экспоненциальная) характеризуется ростом в геометрической прогрессии (увеличение по экспоненциальной кривой). В этот период бактериальные клетки активно растут, используя всю доступную пищу (максимальная скорость роста). Достигнув определенного размера, бактерия начинает делиться, причем процесс размножения протекает с постоянной скоростью, так как запасов пищи пока достаточно. В результате увеличившейся скорости роста и размножения происходит накопление в среде отходов жизнедеятельности (токсинов). К концу фазы скорость роста начинает уменьшаться.
  3. Третья фаза характеризуется стационарным ростом, т. е. количество «новорожденных» клеток совпадает с числом отмерших. Кривая роста и размножения на этом отрезке больше не поднимается. Скорость роста замедляется. Какое-то время общая численность бактерий в питательной среде остается неизменной. Однако за счет появления новых «членов семьи» запасы питательных веществ уменьшаются, а токсичность среды увеличивается. Этот процесс ухудшает условия жизни всей колонии.
  4. Четвертая фаза – отмирание микроорганизмов – возникает в результате катастрофического уменьшения пищи и увеличения токсичности среды. Количество живых организмов неуклонно уменьшается, в конце концов, жизнеспособных клеток становится меньше, чем их отмерших собратьев.

Скорость кинетического роста бактериальной колонии во многом зависит от вида бактерий, состава питательных сред, количества посеянных (внесенных в среду) клеток, возраста культуры, способа дыхания и еще ряда факторов. Например, для размножения молочнокислых бактерий важно поддержание температур в довольно узком диапазоне (25-30⁰С) и определенный уровень кислотности среды (рН). Для размножения аэробных и анаэробных клеток решающим фактором становится наличие или отсутствие кислорода для дыхания, а спорообразующим клеткам необходимо достаточное количество пищи.

Условия выращивания микробов в искусственных средах

Для изучения (медицина, микробиология) и использования (промышленность) выращивают бактериальные культуры на искусственных питательных средах, которые разделяются по консистенции, происхождению и назначению:

  • жидкие, полужидкие и плотные (твердые) искусственные среды;
  • среды животного, растительного происхождения или синтетические (химически чистые соединения в строго определенной концентрации);
  • обычные (универсальные), дифференциальные (различаются по видам бактерий), специальные, избирательные или среды обогащения (подавляющие рост нежелательных микробов).

Существуют бактерии, которым требуются особые условия. Например, анаэробные микроорганизмы (как спорообразующие, так и не спорообразующие) культивируют в анаэробных условиях (без кислорода). Для аэробных клеток решающим фактором размножения становится кислород. Факультативные анаэробы способны менять способ дыхания в зависимости от условий. Спорообразующие аэробные организмы, используемые для получения пробиотиков, очень чувствительны к уменьшению питания и его качеству. Спорообразующие анаэробы требуют полного отсутствия кислорода. Основной принцип культивирования микроорганизмов – создание благоприятных условий (питание, дыхание, температура), что иногда представляет определенные трудности.

Так, для выращивания анаэробов применяют метод глубокого посева, т. е. культуру бактерий вносят в глубину плотной питательной среды, добавляют в атмосферу роста химические вещества, поглощающие кислород, или откачивают воздух, замещая его инертным газом. В случае со спорообразующими бактериями используют внесение в питательную среду ингибитора белкового синтеза, тем самым останавливая процесс спорообразования.

Культивирование микроорганизмов

Под культивированием понимают искусственное выращивание клеток в контролируемых условиях. Конечная цель – получение биопрепарата из бактерий или с помощью бактерий. Такие препараты могут быть лечебными, диагностическими, профилактическими. Существует несколько методов культивирования:

  1. Стационарный способ характеризуется постоянством среды, какое-либо вмешательство в процесс отсутствует. Однако при таком методе культивирования в жидких питательных средах анаэробные организмы дают незначительный выход.
  2. Метод глубинного культивирования используют в промышленности для выращивания бактериальной биомассы. Для этой цели применяют специальные емкости. Факторами роста являются поддержание температуры и подача в жидкие среды питательных веществ. Кроме того, при необходимости проводят перемешивание или подачу кислорода (для дыхания аэробных бактерий).
  3. Метод проточных сред (промышленное культивирование) основан на постоянном поддержании культуры в экспонентной фазе роста. Это достигается непрерывным внесением питательных веществ и выведением токсичных отходов жизнедеятельности клеток. Такая технология позволяет достичь максимального выхода различных биологически активных веществ (антибиотические препараты, витамины и т. д.).

Одним из важнейших промышленных препаратов является культура молочнокислых бактерий, которые используются для приготовления молочной закваски, квашения капусты, силосования кормов, производства заменителя плазмы крови. Для получения гарантированного конечного результата нужно строго контролировать получаемое качество молочнокислых бактерий.

Нужны соответствующая питательная среда и препарат с чистой культурой молочнокислых бактерий, выращенной в лабораторных условиях. Далее процесс культивирования оставляют до момента наступления третьей фазы (равновесия), после чего можно приступать к сбору «урожая» молочнокислых бактерий.

Синдром избыточного бактериального роста

Не всегда рост бактериальных клеток приносит пользу, излишнее увеличение популяций бактерий в организме человека может быть опасным для здоровья. Нарушение качественного и количественного состава микрофлоры кишечника называют клиническим синдромом избыточного роста бактерий. Медики утверждают, что использовать для описания этого процесса термин «дисбактериоз» не совсем корректно. Дело в том, что количество полезных для организма анаэробных бактерий (бифидобактерии) действительно уменьшается, но число условно-патогенных клеток (например, аэробной кишечной палочки) увеличивается.

На разных участках желудочно-кишечного тракта обитают различные бактерии. В тонком кишечнике по мере продвижения постепенно меняется состав микрофлоры и количество микроорганизмов. Аэробные (растущие в кислородной среде) виды бактерий постепенно уступают место анаэробным (бескислородная среда). При клиническом синдроме избыточного роста бактериальный спектр смещается в сторону грамотрицательных (большинство патогенных), факультативно-аэробных и анаэробных организмов.

По мере приближения к толстой кишке увеличивается количество анаэробных бактерий (бифидобактерии и бактероиды). Основные представители анаэробной микрофлоры – бифидобактерии – отвечают за синтез белков, витаминов группы В, различных кислот и других необходимых для жизни веществ. Аэробные микроорганизмы (кишечная палочка) вырабатывают целый ряд витаминов и кислот, участвующих в пищеварении и поддерживающих иммунитет.

Молочнокислые бактерии – еще один представитель кишечной микрофлоры. Они относятся к микроаэрофильным организмам, т. е. одним из факторов роста и размножения молочнокислых бактерий является кислород, но в очень небольших количествах. Эти микроорганизмы отвечают за регулирование кислотности желудочно-кишечного тракта, благодаря чему тормозится рост гнилостных бактерий.

Каждый вид бактерий выполняет свою, четко обозначенную функцию. При синдроме избыточного роста фекальная микрофлора, в нормальных условиях обитающая в толстом кишечнике (кишечная палочка или анаэробные клетки), попадает в тонкую кишку. Меняется количественный и качественный состав бактериальной микрофлоры, выполнение некоторых функций замедляется или становится невозможным. Появляются условия для роста и размножения патогенных бактерий.

Клинические критерии заболевания

Критерием развития синдрома избыточного бактериального роста могут служить:

  • нарушение пищеварения, снижение иммунитета, изменение кислотности желудка;
  • нарушение целостности кишечного тракта;
  • последствия оперативного вмешательства;
  • заболевания желудочно-кишечного тракта;
  • стрессы;
  • неконтролируемый прием антибиотических препаратов.

Клинические проявления синдрома избыточного роста бактерий легко спутать с другими заболеваниями, зачастую они наслаиваются друг на друга, полностью искажая картину. Поставить диагноз в таких случаях можно только с помощью специальных тестов, направленных на выявление синдрома избыточного роста, определяющих не только количество, но и видовую принадлежность бактерий. Такой подход позволит подобрать необходимые медикаментозные препараты для коррекции состава микрофлоры.

Клинические симптомы заболевания:

  • на ранней стадии болезни появляется диарея и метеоризм;
  • вздутие живота и спазматические боли;
  • утомляемость, слабость;
  • быстрое похудение.

Для лечения синдрома избыточного роста применяют антибактериальные препараты. В дальнейшем для восстановления микрофлоры понадобятся пробиотические и пребиотические препараты.

Большое разнообразие бактериальных клеток (автотрофы и гетеротрофы, аэробные и анаэробные, спорообразующие и неспорообразующие и т. д.) диктует определенные условия для их размножения. Основной принцип культивирования в промышленных масштабах – строгий контроль условий среды и скорости роста. В природе редко существуют идеальные среды для развития микроорганизмов. В противном случае бактерии давно заполонили бы все доступное пространство.